42
8018P–AVR–08/10
ATmega169P
9.5
Power-save Mode
When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:
If Timer/Counter2 and/or the LCD controller are enabled, they will keep running during sleep.
The device can wake up from either Timer Overflow or Output Compare event from
Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in TIMSK2,
and the Global Interrupt Enable bit in SREG is set. It can also wake up from an LCD controller
interrupt.
If neither Timer/Counter2 nor the LCD controller is running, Power-down mode is recommended
instead of Power-save mode.
The LCD controller and Timer/Counter2 can be clocked both synchronously and asynchronously
in Power-save mode. The clock source for the two modules can be selected independent of
each other. If neither the LCD controller nor the Timer/Counter2 is using the asynchronous
clock, the Timer/Counter Oscillator is stopped during sleep. If neither the LCD controller nor the
Timer/Counter2 is using the synchronous clock, the clock source is stopped during sleep. Note
that even if the synchronous clock is running in Power-save, this clock is only available for the
LCD controller and Timer/Counter2.
9.6
Standby Mode
When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.
9.7
Power Reduction Register
The Power Reduction Register (PRR), see ”PRR – Power Reduction Register” on page 45, pro-
vides a method to stop the clock to individual peripherals to reduce power consumption. The
current state of the peripheral is frozen and the I/O registers can not be read or written.
Resources used by the peripheral when stopping the clock will remain occupied, hence the
peripheral should in most cases be disabled before stopping the clock. Waking up a module,
which is done by clearing the bit in PRR, puts the module in the same state as before shutdown.
Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall
power consumption. See ”Supply Current of I/O modules” on page 343 for examples. In all other
sleep modes, the clock is already stopped.
相关PDF资料
2-1546217-0 TERM BLK RCPT 20POS SIDE 5.08MM
1-1546217-9 TERM BLK RCPT 19POS SIDE 5.08MM
1-1546217-8 TERM BLK RCPT 18POS SIDE 5.08MM
1-1546217-7 TERM BLK RCPT 17POS SIDE 5.08MM
1-1546217-6 TERM BLK RCPT 16POS SIDE 5.08MM
1-1546217-5 TERM BLK RCPT 15POS SIDE 5.08MM
1-1546217-4 TERM BLK RCPT 14POS SIDE 5.08MM
1-1546217-3 TERM BLK RCPT 13POS SIDE 5.08MM
相关代理商/技术参数
ATMEGA169P-16MCU 功能描述:8位微控制器 -MCU AVR 16KB, 512B EE 16MHz 1KB SRAM, 5V RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
ATMEGA169P-16MU 功能描述:8位微控制器 -MCU AVR 16K FLASH 512B EE 1K SRAM LCD ADC RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
ATMEGA169P-16MU SL383 制造商:Atmel Corporation 功能描述:MCU 8BIT ATMEGA RISC 16KB FLASH 3.3V/5V 64PIN MLF - Tape and Reel
ATMEGA169P-16MUR 功能描述:8位微控制器 -MCU AVR LCD 16KB FLSH EE 512B 1KB SRAM-16MHZ RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
ATMEGA169P-8AU 制造商:ATMEL 制造商全称:ATMEL Corporation 功能描述:Microcontroller with 16K Bytes In-System Programmable Flash
ATMEGA169P-8MU 制造商:ATMEL 制造商全称:ATMEL Corporation 功能描述:Microcontroller with 16K Bytes In-System Programmable Flash
ATMEGA169PA 制造商:ATMEL 制造商全称:ATMEL Corporation 功能描述:8-bit Microcontroller with 16K Bytes In-System Programmable Flash
ATMEGA169PA_1 制造商:ATMEL 制造商全称:ATMEL Corporation 功能描述:High Endurance Non-volatile Memory segments